Name: ________________________________

1. ________
2. ________
3. ________
4. ________

_______ (total score)
1. True or False [18 points]. For each question, circle TRUE or FALSE. No explanation is required.

 If two realizations for the same transfer function have the same number of states (A is the same size for both), then there must exist a state transformation matrix T that transforms one realization into the other (and vice versa).

 a) TRUE FALSE

 b) If a linear time-invariant system is BIBO stable, then it is always Lyapunov stable.

 TRUE FALSE

 c) If a linear time-invariant system is asymptotically stable, then it is always exponentially stable as well.

 TRUE FALSE

 d) When using the input $u(t) = \sin(t)$, the output $y(t)$ of the system is unbounded. We can conclude that the system is definitely NOT BIBO stable.

 TRUE FALSE

 e) When using the input $u(t) = \sin(t)$, the output $y(t)$ of the system is bounded. We can conclude that system is definitely BIBO stable.

 TRUE FALSE

 f) If $\dot{x}(t) = Ax(t)$ is asymptotically stable, then so is $x[k + 1] = Ax[k]$ (same A matrix for both systems).

 TRUE FALSE
2. Minimal realizations [12 points].

a) Consider the following state-space realization:

\[
\begin{bmatrix}
3 & 0 & 0 & 3 & 0 & 0 & 7 \\
3 & 2 & 7 & 2 & 8 & 1 & 0 \\
0 & 3 & 1 & 2 & 1 & 2 & 3 \\
0 & 0 & 0 & 6 & 0 & 0 & 0 \\
0 & 0 & 0 & 7 & 2 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Write down a minimal realization for this system.

b) Find a minimal realization for a system whose impulse response is \(h(t) = 2e^{-t} - 3e^{-2t} \).
3. **Lyapunov stability for a nonlinear system [10 points].** Consider the nonlinear dynamical system:

\[
\dot{x}(t) = -x(t) + \frac{1}{4}x(t)^3, \quad x(0) = x_0
\]

Prove that the point \(\dot{x} = 0 \) is a stable equilibrium point.

Hint: use the Lyapunov function \(V(x) = x^2 \).
4. Evaluating quadratic integrals [10 points]. Suppose \(\dot{x}(t) = Ax(t) \) and \(A \) is Hurwitz (all eigenvalues of \(A \) have a strictly negative real part). Suppose \(Q = Q^T \) is a symmetric matrix. We are interested in evaluating the integral

\[
J(x_0) = \int_0^\infty x(t)^T Q x(t) \, dt
\]

Where \(x(t) \) is the state of the system at time \(t \), assuming we start at \(x(0) = x_0 \). Prove that the value of this integral is given by:

\[
J(x_0) = x_0^T P x_0
\]

where \(P \) satisfies the Lyapunov equation \(A^T P + PA + Q = 0 \).