A set of vectors \(\{u_1, \ldots, u_k\} \) in \(\mathbb{R}^n \) is

i) **orthogonal** if \(u_i^T u_j = 0 \) for all \(i \neq j \)

ii) **normalized** if \(\|u_i\| = 1 \) for all \(i \)

"orthonormal" if both are true.

Example: \(S = \text{span} \left(\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} \right) = \text{span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) \).

Theorem: Every subspace has an orthonormal basis.

(we'll see how to construct one!)

In other words, given any \(A = [a_1, \ldots, a_k] \) and \(S = \mathbb{R}(A) \),

\(\text{dim. indep.} \)

there are orthonormal vectors \(\{q_1, \ldots, q_k\} \) such that if \(Q = [q_1, \ldots, q_k] \) then \(\mathbb{R}(A) = \mathbb{R}(Q) \). A matrix like \(Q \) (orthonormal columns)

is called an **orthogonal matrix**. (really should be called an orthonormal matrix, but that's not the convention.)
Orthogonal matrices: \(Q = [q_1, \ldots, q_n] \in \mathbb{R}^{m \times n} \) is orthogonal if

\[
q_i \cdot q_j = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases}
\]

equivalently, \(Q \) is orthogonal if:

\[
Q^T Q = \begin{bmatrix} q_1^T q_1 & \cdots & q_n^T q_n \\
\vdots & \ddots & \vdots \\
q_n^T q_n & \cdots & q_n^T q_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \end{bmatrix} = I
\]

Properties

[Remember: \(P, Q \) need not be square!]

i) if \(P, Q \) orthogonal, then \(PQ \) is orthogonal.

\[
\text{proof: } (PQ)^T(PQ) = Q^T P^T P Q = Q^T Q = I
\]

ii) if \(Q \) is orthogonal, then 2-norm is preserved: \(\|Qx\| = \|x\| \).

\[
\text{proof: } \|Qx\|^2 = (Qx)^T(Qx) = x^T Q^T Q x = x^T x = \|x\|^2
\]

More properties:

i) in general, \(QQ^T \neq I \). But if \(Q \) is square and orthogonal,

\(Q^T Q = QQ^T = I \), i.e. \(Q^T \) is also orthogonal, and \(Q^{-1} = Q^T \).

ii) if \(Q \in \mathbb{R}^{m \times n} \) is orthogonal, there exists \(Q_2 \in \mathbb{R}^{m \times (m-n)} \) also orthogonal such that \([Q_1, Q_2] \) is orthogonal (and square).

In fact, \(R(Q_2) = R(Q_1)^{-1} \)
projections: \[w = \text{proj}_u(v) \] (projection of \(v \) onto \(u \)).

(see picture) - it's a decomposition of \(v \) into \(w + w' \)
where \(w \) is aligned with \(u \) and \(w' \) is orthogonal to \(u \).

\[v \text{ has length } \|v\|. \text{ Therefore, } \|w\| = \|v\| \cos \theta \]

\[\Rightarrow \|w\| = \frac{\|u\| \cdot \|v\| \cos \theta}{\|u\|} = \left(\frac{u^T v}{\|u\|^2} \right) \]

and the direction (normalized) of \(w \) should be \(\frac{u}{\|u\|} \).

Therefore, \[w = \frac{\|w\|}{\|u\|} \cdot \frac{u}{\|u\|} = \frac{u^T v}{\|u\|^2} u \]

so: \[\text{proj}_u(v) = \frac{u^T v}{\|u\|^2} u \]. We also have \(w' = v - \text{proj}_u(v) \).

Gram-Schmidt orthogonalization given \(\{a_1, a_2, \ldots, a_n\} \),

\[a_1' = a_1 \]
\[a_2' = a_2 - \text{proj}_{a_1'}(a_2) \]
\[a_3' = a_3 - \text{proj}_{a_1'}(a_3) - \text{proj}_{a_2'}(a_3) \]
\[\vdots \]
\[a_n' = a_n - \sum_{i=1}^{n-1} \text{proj}_{a_i'}(a_n) \]

then normalize: \(u_i = \frac{a_i'}{\|a_i'\|} \) for all \(i \).

\[\Rightarrow \{u_1, \ldots, u_n\} \text{ is an orthonormal basis for span } \{a_1, \ldots, a_n\} \]
What if the \(\{a_i, \ldots, a_n\} \) are not linearly independent? In this case, some \(a_i \) is a linear combination of the previous \(\{a_1, \ldots, a_{i-1}\} \), so \(a_i = a_i - \sum_{j=1}^{i-1} \text{proj}_{a_j}(a_i) = 0 \). Simply move on and ignore this \(a_i \). Note result:

\[
\{a_1, \ldots, a_n\} \xrightarrow{\text{Gram-Schmidt}} \{u_1, \ldots, u_r\}
\]

any set of vectors

orthonormal basis for \(\mathbb{R}(A) \),
where \(r = \text{rank}(A) \).

Note: \(\{u_1, \ldots, u_r\} \) is not unique! (Could rearrange \(a_i \)'s and get a different result). There are many possible orthonormal bases in general.

in Matlab:

- \(\text{orth}(A) \): produces a matrix that is orthogonal and for which the range equals the range of \(A \).
- \(\text{null}(A) \): produces a matrix that is orthogonal whose columns are an orthonormal basis for \(\mathbb{N}(A) \).
Gram-Schmidt examples

\[A = \begin{bmatrix} -1 & 1 & 2 \\ 1 & -1 & 2 \end{bmatrix} \quad ; \quad a_1 = \begin{pmatrix} -1 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 1 \end{pmatrix}, \quad a_3 = \begin{pmatrix} 2 \end{pmatrix} \]

\[a'_1 = \begin{pmatrix} -1 \end{pmatrix}, \]
\[a' = \begin{pmatrix} 1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} - \begin{pmatrix} -1 \end{pmatrix} = \begin{pmatrix} 2 \end{pmatrix} \]

\[a''_3 = \begin{pmatrix} 2 \end{pmatrix} - \frac{0}{2} \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 2 \end{pmatrix} \]

so \[a'_1 = \begin{pmatrix} -1 \end{pmatrix}, \quad a'_2 = \begin{pmatrix} 0 \end{pmatrix}, \quad a''_3 = \begin{pmatrix} 2 \end{pmatrix} \]

\[\Rightarrow u_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad u_2 = \begin{pmatrix} \frac{1}{\sqrt{10}} \end{pmatrix} \quad \Rightarrow \quad U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{10}} & \frac{1}{\sqrt{2}} \end{bmatrix} \]

\[A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 1 & 3 & 1 \end{bmatrix} \quad ; \quad a_1 = \begin{pmatrix} 1 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 1 \end{pmatrix} \]

\[a'_1 = \begin{pmatrix} 1 \end{pmatrix}, \]
\[a''_2 = \begin{pmatrix} 2 \end{pmatrix} - \frac{1}{3} \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 2 \end{pmatrix} - \begin{pmatrix} \frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{4}{3} \end{pmatrix} \]

\[\Rightarrow u_1 = \begin{pmatrix} \frac{1}{\sqrt{3}} \end{pmatrix}, \quad u_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \end{pmatrix} \quad \Rightarrow \quad U = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{bmatrix} \]
if S is any subspace, we can find orthonormal \(U \in \mathbb{R}^{n \times r} \), such that \(R(U_1) = S \). Then, find \(U_2 \) such that \([U_1, U_2]\) is orthonormal and square. [how? one way is to apply G.S. to \([U_1, I]\) ...].

Now take any vector \(x \in \mathbb{R}^n \). Since \(U = [U_1, U_2] \) is orthonormal and square, \(U^T U = U U^T = I \). So:

\[
X = U U^T x
= [U_1, U_2][U_1, U_2]^T x
= U_1 U_1^T x + U_2 U_2^T x.
= \left(u_1 u_1^T x + \cdots + u_r u_r^T x \right) + \left(u_{r+1} u_{r+1}^T x + \cdots + u_n u_n^T x \right)
= \left(\sum_{i=1}^{r} \text{proj}_{u_i} x \right) + \left(\sum_{i=r+1}^{n} \text{proj}_{u_i} x \right)
= \text{proj}_{\text{span}(u_1, \ldots, u_r)} x + \text{proj}_{\text{span}(u_{r+1}, \ldots, u_n)} x.
\]

Every \(x \in \mathbb{R}^n \) can be written as \(x_1 + x_2 \) where \(x_1 \in S \), \(x_2 \in S^\perp \) in a unique way. If \(R(U_1) = S \) and \(R(U_2) = S^\perp \), \([U_1, U_2]\) orthonormal, then \(x_1 = U_1 U_1^T x = \text{proj}_S x \), \(x_2 = U_2 U_2^T x = \text{proj}_{S^\perp} x \).
Solving \(\| b - A x \| \) is the same as finding \(\hat{b} \in \text{R}(A) \) such that \(\| b - \hat{b} \| \) is as small as possible.

\[b = \hat{b} + \hat{r} \]

where \(\hat{b}^T \hat{r} = 0 \), \(\hat{b} \in \text{R}(A) \), \(\hat{r} \in \text{R}(A)^{\perp} \).

If \(R(U_1) = R(A) \), \(U_1 \) orthogonal,

\[\begin{aligned} \hat{b} &= U_1 U_1^T b \\ \hat{r} &= U_2 U_2^T b = (I - U_1 U_1^T) b. \end{aligned} \]

Note: \(\hat{b} = \text{proj}_{\text{R}(A)} b \), \(\hat{r} = \text{proj}_{\text{R}(A)^{\perp}} b \). Also, \(\hat{b}^T \hat{r} = b^T U_1 U_1^T U_2 U_2^T b = 0 \).

\(\hat{b} \) and \(\hat{r} \) are always unique! There may be multiple \(x \)'s such that \(\hat{b} = A x \), but there is only one \(\hat{b} \)!

We already saw that LS solutions satisfy \(A^T A \hat{x} = A^T b \).

If columns of \(A \) are independent, \(\hat{x} = (A^T A)^{-1} A^T b \).

Therefore, \(\hat{b} = A \hat{x} = A (A^T A)^{-1} A^T b \).

So:

\[\begin{aligned} \hat{b} &= \text{proj}_{\text{R}(A)} b = A (A^T A)^{-1} A^T b \\ \hat{r} &= \text{proj}_{\text{R}(A)^{\perp}} b = (I - A (A^T A)^{-1} A^T) b. \end{aligned} \]

Can easily check that \(\hat{b} + \hat{r} = b \) and \(\hat{b}^T \hat{r} = 0 \).
in Matlab: if A has full column rank, "$A \backslash b$" (backslash) is the same as $(A^T A)^{-1} A^T b$.

A check: $A = \text{rand}(10, 5)$;
$U_1 = \text{orth}(A)$;

(should be zero!

$U_1 U_1^T = A \ast \text{inv}(A^T A) \ast A$