We have been looking at solving regularized problems:

\[
\min_x \|Ax - b\|_2^2 + \lambda r(x)
\]

where \(r(x)\) is chosen to be: (other choices exist also!)

\[
r(x) = \begin{cases}
 \|x\|_1 : \text{lasso, promotes sparsity} \\
 \|x\|_2^2 : \text{tikhonov/ridge regression, small norm solution.} \\
 \|x\|_\infty : \text{equalized/quantized solution.}
\end{cases}
\]

Important to note:

\(\Rightarrow\) although we have a formula for the L2 case, i.e.
\[\hat{x} = A^+b \quad \text{when } \lambda \rightarrow 0 \quad \text{and } \quad \hat{x} = V_i \Sigma_i (\Sigma_i + \lambda I)^{-1} U_i^T b\]

in general, there is no formula for the L1 and L\(\infty\) cases!

Instead, we must use iterative methods to find the solution.

Note: iterative methods are often used to solve L2 problems even though we have a formula because iterative methods are fast! (we will discuss iterative methods soon).

\(\Rightarrow\) although L2 problem always has a unique solution, the same is not true for L1 and L\(\infty\) cases.

Example:
\[
\min_x \| [1, 1]^T x - 1 \|_2^2 + \lambda \|x\|_1.
\]
Example 1: predicting breast cancer from gene markers.

- we have m patients, m ≈ 200.
- each has been screened and tested. For each patient, we know the activity levels of \(n \approx 5000 \) genes, and we also know whether they have breast cancer or not.

\[
\begin{bmatrix}
1 \\
1 \\
1 \\
\vdots \\
1
\end{bmatrix}
= \begin{bmatrix}
0.3 & -0.21 & \cdots \\
0.6 & -0.1 & \cdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
x_1 & x_2 & \cdots & x_n
\end{bmatrix}
\]

- disease state
- activity level for each of \(n \) genes
- in all \(m \) patients.

we'd like a design for \(\mathbf{x} \) that predicts disease state.
- i.e. we want to make a linear classifier.

Problem: in previous examples, e.g. iris classification, we had a large number of samples (flowers) and a small number of characteristics (sepal length, petal width,...) but this time, \(\mathbf{A} \mathbf{x} = \mathbf{b} \) has exact (and as many) solutions!

Important note:

Matlab's \(\mathbf{A} \backslash \mathbf{b} \) is not the same as \(\text{pinv}(\mathbf{A}) \times \mathbf{b} \) when \(\mathbf{A} \) is not full column rank!
Ex 1, cont'd

Regularization can help us choose a solution. In this case, we expect a relatively small number of genes to be involved, so it makes sense to look for a sparse x.

So we can use the lasso and adjust λ and find solutions.

For each λ, solve min $||Ax-b||^2 + \lambda ||x||_1$.

(again, we'll see how to do this later!) and plot the trade-off curve:

![Graph showing $||Ax-b||^2$ vs. $||x||_1$](image)

(surrogate for sparsity).

If we plot actual sparsity:

![Graph showing number of non-zero entries in x vs. $||Ax-b||^2$](image)

genre trend, but $\text{nnz}(x)$ is not a convex function, so it's not perfect.
Example 2: Hovercraft path planning (a control problem)

- Position at time t.
- Desired final position.

At $t=0$, craft is at $x=0$ (not moving).

At $t=40$, we want $x=10$ (again not moving).

We can apply thruster force at $t=0, 1, 2, \ldots$.

Define $\{x_0, x_1, \ldots, x_t, \ldots\} =$ position at time t.

$\{v_0, v_1, \ldots, v_t, \ldots\} =$ velocity at time t.

$\{u_0, u_1, \ldots, u_t, \ldots\} =$ thrust at time t.

Suppose equations of motion are

\[
\begin{align*}
\frac{d}{dt} x(t) &= v(t) \\
\frac{d}{dt} v(t) &= u(t)
\end{align*}
\]

"Double integrator".

Discretized equations:

\[
\begin{bmatrix}
v_{t+1} \\
x_{t+1}
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
v_t \\
x_t
\end{bmatrix} +
\begin{bmatrix}
0 \\
1
\end{bmatrix} u_t.
\]

\[
Z_{t+1} = A Z_t + B u_t.
\]

This is a linear dynamical system! (Ref. HW#1).
initial condition: \(Z_0 = [x_0, y_0] = [0, 0] \)

terminal condition: \(Z_{40} = [x_{40}, y_{40}] = [0, 0] \)

variables: \(u_0, u_1, \ldots, u_{39} \)

\[
U = \begin{bmatrix}
 u_0 \\
 u_1 \\
 \vdots \\
 u_{39}
\end{bmatrix}
\]

constraint...

\[
Z_1 = A Z_0 + B u_0 \\
Z_2 = A Z_1 + B u_1 = A^2 Z_0 + A B u_0 + B u_1 \\
\vdots \\
Z_{40} = A^{40} Z_0 + A^{39} B u_0 + A^{38} B u_1 + \ldots + A B u_{39} + B u_{39}
\]

\[
b = \text{zero.}
\]

\[
\begin{bmatrix}
 A^{39} B & \cdots & B
\end{bmatrix}
\begin{bmatrix}
 u_0 \\
 \vdots \\
 u_{39}
\end{bmatrix}
\]

problem: find \(U \) such that \(P U = b \).

\(\uparrow \quad \uparrow \quad \uparrow \)

2x40 \quad 40x1 \quad 2x1

highly under-determined!

how should one choose \(U \)?

- minimize \(\|U\|_2 \): higher thrust is increasingly more costly. Maybe appropriate if engine is less efficient at higher thrust. (more fuel required), Or cost is proportional to "input energy"

- minimize \(\|U\|_1 \): cost is proportional to thrust. More use also promotes sparsity.

- minimize \(\|U\|_{\infty} \): cost is proportional to maximum thrust required. (i.e. engine is free to operate, you pay more for bigger engine!)
problem: \[\text{minimize } \| u \|_\alpha \]
\[\text{subject to } Pu = b. \]

first approach: \[\text{minimize } \| Pu - b \|_2^2 + \lambda \| u \|_\alpha \]
(regularize)
and take the limit of small \(\lambda > 0 \).

second approach: if \(Pu = b \), then \(u = \frac{P^* b + V_2 w}{\text{particular solution}} \) \(\frac{\text{general element}}{\text{solution of } N(P)} \).

then, \[\text{minimize } \| P^* b + V_2 w \|_\alpha \]
and \(\hat{u} = P^* b + V_2 \hat{w} \).

\[\text{show demo!} \]

- **L2**: (linear)
- **L0**: (constant)
- **L1**: (sparsel)