Optimal Controller Synthesis for the Decentralized Two-Player Problem with Output Feedback

Laurent Lessard1 Sanjay Lall2

American Control Conference, pp. 6314–6321, 2012

Abstract

In this paper, we present a controller synthesis algorithm for a decentralized control problem. We consider an architecture in which there are two interconnected linear subsystems. Both controllers seek to optimize a global quadratic cost, despite having access to different subsets of the available measurements. Many special cases of this problem have previously been solved, most notably the state-feedback case. The generalization to output-feedback is nontrivial, as the classical separation principle does not hold. Herein, we present the first explicit state-space realization for an optimal controller for the general two-player problem.

1 Introduction

Many large-scale systems such as the internet, power grids, or teams of autonomous vehicles, can be viewed as a network of interconnected subsystems. A common feature of these applications is that subsystems must make control decisions with limited information. The hope is that despite the decentralized nature of the system, global performance criteria can be optimized.

In this paper, we consider a specific information structure in which there are two linear subsystems and the state-space matrices are block-triangular:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
y_1 \\
y_2
\end{bmatrix} =
\begin{bmatrix}
A_{11} & 0 \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
+ \begin{bmatrix}
B_{11} & 0 \\
B_{21} & B_{22}
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} + w
\]

In other words, Player 1’s measurements and dynamics only depend on Player 1’s inputs, but Player 2’s system is fully coupled. Our aim is to find an output-feedback law with this same structure; \(u_1\) must depend only on \(y_1\), but \(u_2\) is allowed to depend on both \(y_1\) and \(y_2\).

The controller must be stabilizing, and must also minimize the infinite-horizon quadratic cost

\[
\lim_{T \to \infty} \frac{1}{T} \mathbb{E} \int_0^T \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}^T \begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} dt
\]

The disturbance \(w\) and noise \(v\) are assumed to be stationary zero-mean Gaussian processes; they may be correlated, and are characterized by the covariance matrix

\[
\begin{bmatrix}
\text{cov}(w) \\
\text{cov}(v)
\end{bmatrix} =
\begin{bmatrix}
W & U \\
U^T & V
\end{bmatrix}
\]

In this paper, we provide explicit state-space formulae for an optimal controller. These formulae provide tight upper bounds on the minimal state dimension for an optimal controller, which were previously not known.

The paper is organized as follows. In Section 2, we give a brief history of decentralized control and the two-player problem in particular. In Section 3, we review some required background mathematics and notation. In Section 4, we review the solution to the centralized \(H_2\) synthesis problem. In Sections 5 and 6, we construct our main result, given in Theorem 11. In Sections 7 and 8, we discuss the state dimension and estimation structure of the solution, and finally we conclude in Section 9.

2 Prior Work

If we consider the problem of Section 1 but remove the structural constraint on the controller, the problem becomes a classical \(H_2\) synthesis. Such problems are well studied, and are solved for example in [21]. The optimal controller in this centralized case is linear, and has as many states as the original system.

The presence of structural constraints greatly complicates the problem, and the resulting decentralized problem has been outstanding since the 1968 work of Witzenhausen [18]. That paper posed a related problem for which a nonlinear controller strictly outperforms all linear policies [18]. However, this is not always the case. For a broad class of decentralized control problems there exists a linear optimal policy, and finding it amounts...
to solving a convex optimization problem [2, 8, 9, 17].
The two-player problem is in this class, and so we may
without loss of generality restrict our search to linear
controllers. Despite the benefit of convexity, the search
space is infinite-dimensional since we must optimize over
transfer functions. The standard numerical approach to
solving such general problems is to work in a finite dimen-
sional basis and construct a sequence of approximations
which converge to an optimal controller.

Several other numerical and analytical approaches for
addressing decentralized optimal control exist, includ-
ing [7, 12, 20]. One particularly relevant numerical ap-
proach is to use vectorization, which converts the de-
centralized problem into an equivalent centralized prob-
lem [10]. This conversion process results in a dramatic
growth in state dimension, and so the method is ex-
tremely computationally intensive and only feasible for
small problems. However, it does provide insight into
the problem. Namely, it proves that the optimal con-
troller for the two-player problem is rational, and gives
an upper bound on the state dimension.

Explicit solutions have also been found, but only for
special cases of the problem. Most notably, the state-
feedback case admits a clean state-space solution using a
spectral factorization approach [15]. This approach was
also used to address a case with partial output-feedback,
in which there is output-feedback for one player and
state-feedback for the other [16]. The work of [13] also
providing a solution to the state-feedback case using the
Möbius transform associated with the underlying poset.
Certain special cases were also solved in [3], which gave
a method for splitting decentralized optimal control prob-
lems into multiple centralized problems. This splitting
approach addresses a broader class of problems, including
state-feedback, partial output-feedback, and dynamically
decoupled problems. Another important special case ap-
ppearing recently is the one-timestep-delayed case [4]. All
of these problems are overlapping special cases of the
general output-feedback problem considered here.

Of the works above, the first solution was to the two-
player problem, in [15]. Subsequent work addresses the
multi-player state-feedback problem, including [13, 14].
In this paper, we address the two-player output-feedback
problem, via a new approach. It is perhaps closest techni-
cally to the work of [15] using spectral factorization, but
uses the factorization to split the problem in a different
way, allowing a solution of the general output-feedback
problem. This paper is a more general version of the
invited paper [5].

3 Preliminaries

Transfer functions. We use the following notation in
this paper. The real and complex numbers are denoted
by \(\mathbb{R} \) and \(\mathbb{C} \) respectively. We use the notation \(\mathcal{L}_2 \)
to denote the Hilbert space of matrix-valued functions on
the imaginary axis, so that \(\mathcal{F} \in \mathcal{L}_2 \) if \(\mathcal{F} : j\mathbb{R} \rightarrow \mathbb{C} \)
and the following norm is bounded:

\[
\|\mathcal{F}\|^2 \triangleq \frac{1}{2\pi} \int_{-\infty}^{\infty} \|\mathcal{F}(j\omega)\|^2 F \, d\omega
\]

where \(\|\cdot\|_F \) is the Frobenius norm. Occasionally we may
need to refer to other \(\mathcal{L}_2 \) spaces also. We use \(\mathcal{H}_2 \) to de-
note the well-known corresponding Hardy space, which is
a subspace of \(\mathcal{L}_2 \). This space may be identified with
the set of Laplace transforms of \(\mathcal{L}_2[0, \infty) \); see for exam-
ple [1] for details. We append the symbol \(\mathcal{R} \) to denote rational functions with real coefficients. The orthogonal
complement of \(\mathcal{H}_2 \) in \(\mathcal{L}_2 \) is written as \(\mathcal{H}_2^\perp \).

State-space. In this paper, all systems are linear
and time-invariant (LTI), rational, and continuous-time.
Given a state-space representation \((A, B, C, D) \) for such
a system, we can describe the input-output map as a
matrix of proper rational functions

\[
\mathcal{F} = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\triangleq D + C(sI - A)^{-1}B
\]

If the realization is minimal, \(\mathcal{F} \) having stable poles is
equivalent to \(A \) being Hurwitz, and \(\mathcal{F} \) being strictly
proper is equivalent to \(D = 0 \). The conjugate transpose
\(\mathcal{F}^\sim(j\omega) = [\mathcal{F}(j\omega)]^* \) satisfies

\[
\mathcal{F}^\sim = \begin{bmatrix}
-A^T & C^T \\
-B^T & D^T
\end{bmatrix}
\]

Of particular interest is \(\mathcal{R}\mathcal{H}_2 \), the set of strictly proper
rational transfer functions with stable poles. If \(z = \mathcal{G}w \)
where \(\mathcal{G} \in \mathcal{R}\mathcal{H}_2 \) and \(w \) is white Gaussian noise with unit
variance, the average infinite-horizon cost is finite, and
equal to the square of the \(\mathcal{L}_2 \)-norm:

\[
\lim_{T \to \infty} \frac{1}{T} \mathbb{E} \int_{0}^{T} \|z(t)\|^2 \, dt = \|\mathcal{G}\|^2
\]

In this case, the \(\mathcal{L}_2 \)-norm is also called the \(\mathcal{H}_2 \)-norm.

Sylvester Equations. A Sylvester equation is a ma-
rrix equation of the form

\[
AX + XB + C = 0
\]

where \(A \) and \(B \) are square matrices, possibly of different
sizes. Here, we must solve for \(X \) and all other parameters
are known. We write \(X = \text{LYAP}(A, B, C) \) to denote a
solution when it exists.

Riccati Equations. A continuous-time algebraic Ric-
cati equation (CARE) is a matrix equation of the form

\[
A^T X + XA - (XB + S)R^{-1}(XB + S)^T + Q = 0
\]

Again, we must solve for \(X \) and all other parameters are
known. We say \(X \geq 0 \) is a stabilizing solution if \((A+BK) \)
is stable, where \(K = -R^{-1}(XB + S)^T \) is the associated
gain matrix. We write \(X = \text{CARE}(A, B, Q, R, S) \) to de-
note a stabilizing solution when it exists.
Lemma 1. Suppose G_1 and G_2 are stable proper rationals

$$G_1 = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} \quad \text{and} \quad G_2 = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix}$$

Then $Z = \text{LYAP}(A_1, A_1^T, B_1 B_1^T)$ has a unique solution and $G_1 G_2^\ast$ may be split up as

$$G_1 G_2^\ast = \begin{bmatrix} A_1 & B_1 D_2^T + Z C_2^T \\ C_1 & 0 \end{bmatrix} + \begin{bmatrix} A_2 & B_2 D_2^T + Z^T C_1^T \\ C_2 & 0 \end{bmatrix}^\ast$$

Proof. The identity is easily verified algebraically. Existence and uniqueness of Z follows from the stability of A_1 and A_2. See for example [21, §2].

We use P to denote the projection operator $L_2 \to \mathcal{H}_2$.

Stabilization. For simplicity, we assume throughout this paper that the plant dynamics are stable. In the centralized case, no generality is lost by this assumption. The celebrated Youla parametrization explicitly parametrizes all stabilizing controllers [19, 21].

More care is needed in the decentralized case because coprime factorizations do not preserve sparsity structure in general. In recent work by Sabău and Martins [11], a structure-preserving coprime factorization is found that yields a Youla-like parametrization for all quadratically invariant structural constraints. In particular, it would apply to the problem considered herein.

4 The Centralized Problem

In this section, we review the spectral factorization approach to solving the centralized \mathcal{H}_2 synthesis problem. In Section 5, these ideas will be applied to the two-player case. The state-space equations are

$$\dot{x} = Ax + Bu + Mw, \quad (1)$$
$$z = Fx + Hu \quad (2)$$
$$y = Cx + Nw \quad (3)$$

As is standard, we assume $H^TH > 0$ and $NN^T > 0$ so that the problem is nonsingular. Our goal is to find a LTI system K that maps y to u, and minimizes the average infinite-horizon cost $\lim_{T \to \infty} \frac{1}{T} \mathbb{E} \int_0^T \|z(t)\|^2 \, dt$. For consistency with Section 1, define

$$\begin{bmatrix} Q & S \\ S^T & R \end{bmatrix} \triangleq \begin{bmatrix} F & H \end{bmatrix}^T \begin{bmatrix} F & H \end{bmatrix} = \begin{bmatrix} F^T F & F^T H \\ H^T F & H^T H \end{bmatrix}$$
$$\begin{bmatrix} W & U \end{bmatrix} \triangleq \begin{bmatrix} M & M^T \\ N & N^T \end{bmatrix} = \begin{bmatrix} MM^T & MN^T \\ NM^T & NN^T \end{bmatrix}$$

By taking Laplace transforms of (1)–(3), and eliminating x, we obtain

$$\begin{bmatrix} z \\ y \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix} \begin{bmatrix} w \end{bmatrix} \quad (4)$$

where the p_{ij} are transfer functions given by

$$p_{11} = \begin{bmatrix} A & M \\ F & 0 \end{bmatrix}, \quad p_{12} = \begin{bmatrix} A & B \\ F & H \end{bmatrix}, \quad p_{21} = \begin{bmatrix} A & M \\ C & N \end{bmatrix}, \quad p_{22} = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix} \quad (5)$$

As above, we assume A is Hurwitz. Substituting $u = Ky$ and eliminating y and u from (4), we obtain the closed-loop map

$$z = (p_{11} + p_{12} K(I - p_{22} K)^{-1} p_{21}) w \quad (6)$$

Since minimizing the average infinite-horizon cost is equivalent to minimizing the H_2-norm of the closed-loop map, we seek to

minimize $\|p_{11} + p_{12} K(I - p_{22} K)^{-1} p_{21}\|$ subject to K is proper and rational \mathcal{H}_2-stabilizing

The norm above is taken to be infinity when the linear fractional function is not strictly proper. Using the well-known Youla parameterization [19] of all stabilizing controllers, make the substitution $Q = K(I - p_{22} K)^{-1}$. Since $p_{22} \in \mathcal{H}_2$, the constraint that K be stabilizing and proper is equivalent to the constraint that Q be stable. In addition, the assumptions that $H^TH > 0$ and $NN^T > 0$ imply that Q must be strictly proper to ensure finiteness of the norm. We would therefore like to solve

$$\begin{align*}
\text{minimize} & \quad \|p_{11} + p_{12} Q p_{21}\| \\
\text{subject to} & \quad Q \in \mathcal{H}_2
\end{align*} \quad (8)$$

Note that the Q-substitution is invertible, and its inverse is $K = Q(I + p_{22} Q)^{-1}$. So solving (8) will give us a solution to the original problem (7).

Lemma 2. Suppose $p_{11}, p_{12},$ and p_{21} are defined by (5), and there exist stabilizing solutions to the CAREs

$$X = \text{CARE}(A, B, Q, R, S), \quad K = -R^{-1}(XB + S)^T$$
$$Y = \text{CARE}(A^T, C^T, W, V, U), \quad L = -(YC^T + U)V^{-1}$$

A solution to (8) is given by

$$Q_{opt} = \begin{bmatrix} A + BK & BK \\ 0 & A + LC \end{bmatrix} - \begin{bmatrix} L \\ K \end{bmatrix} \quad (9)$$

Proof. See for example [21, §14].

The solution (9) is the celebrated classical \mathcal{H}_2-optimal controller.
In Section 5, we will require the solution to the well-known H_2 model-matching problem. This problem is more general than the above because here, P_1, P_2, R_1, and P_2 do not share a common A-matrix in their state-space realizations.

Lemma 3. Suppose P_1, P_2, and P_2 are matrices of stable transfer functions with state-space realizations

\[P_1 = \begin{bmatrix} A & J \\ G & 0 \end{bmatrix}, \quad P_2 = \begin{bmatrix} \hat{A} & B \\ F & H \end{bmatrix},\quad P_2 = \begin{bmatrix} \hat{A} & M \\ C & N \end{bmatrix} \]

Note that A, \hat{A}, and \hat{A} may be different matrices. Suppose there exists stabilizing solutions to the CAREs

\[X = \text{CARE}(\hat{A}, B, Q, R, S), \quad K = -R^{-1}(X B + S)^T \\
Y = \text{CARE}(\hat{A}^T, C^T, W, V, U), \quad L = -(Y C^T + U)V^{-1} \]

Then, there exists unique solutions to the equations

\[\dot{Z} = \text{LYAP} \left((\hat{A} + BK)^T, A, (F + HK)^T G \right) \]
\[\hat{Z} = \text{LYAP} \left(A, (\hat{A} + LC)^T, J(M + LN)^T \right) \]

Furthermore, a solution to (8) is given by

\[Q_{\text{opt}} = -W_L^{-1} \begin{bmatrix} A & JN^T + \hat{Z}C^T \\ B^T Z + H^T G \end{bmatrix} W_R^{-1} \]

where W_L and W_R are defined by

\[W_L = \begin{bmatrix} \hat{A} & B \\ -R^{1/2}K & R^{1/2} \end{bmatrix}, \quad W_R = \begin{bmatrix} \hat{A} & -L V^{1/2} \\ C & V^{1/2} \end{bmatrix} \]

Proof. The optimality condition [6] for (8) is

\[\mathcal{P}_12P_{11} + \mathcal{P}_{12}P_{21} = H_2 \]

Compute spectral factorizations, as in [21, §13]. Then $P_{12}P_{12} = W_L^T W_L$ and $P_{12}P_{21} = W_R W_R$. The optimal Q is thus $Q_{\text{opt}} = -W_L^{-1} \mathcal{P}(W_L^{-1} P_{12} P_{21}) W_R^{-1}$. Now simplify

\[\mathcal{P}(W_L^{-1} P_{12} P_{21}) W_R^{-1} = \mathcal{P} \left(\begin{bmatrix} \hat{A} + BK & BR^{-1/2} \\ F + HK & HR^{-1/2} \end{bmatrix} \right) \times \begin{bmatrix} \hat{A} + LC & M + LN \\ V^{-1/2} C & V^{-1/2} N \end{bmatrix} \]

We may compute this projection by applying Lemma 1 twice. This results in the two Sylvester equations (10). Upon simplification, we obtain the final solution (11).

Remark 4. The general problem considered in Lemma 3 simplifies to the classical problem in Lemma 2 if we set $\hat{A} = A, \hat{A} = A, G = M$, and $J = F$. Under these assumptions, the Riccati and Sylvester equations have the same solutions. Indeed, we find $\hat{Z} = X$ and $\hat{Z} = Y$. This is why (9) is so much simpler than (11).

5 The Two-Player Problem

Many of the equations for the centralized problem covered in Section 4 still hold for the two-player problem. In particular, (1)–(6) are the same, but we have some additional structure:

\[A \triangleq \begin{bmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{bmatrix}, \quad B \triangleq \begin{bmatrix} B_{11} \\ B_{21} \\ B_{22} \end{bmatrix}, \quad C \triangleq \begin{bmatrix} C_{11} & 0 \\ C_{21} & C_{22} \end{bmatrix} \]

We also impose a similar structure on our controller K. We denote the set of block lower-triangular operators as S, and omit the specific class of operators from this notation for convenience. We therefore write the constraint as $K \in S$. To ease notation, define

\[E_1 \triangleq \begin{bmatrix} I \\ 0 \end{bmatrix}, \quad E_2 \triangleq \begin{bmatrix} 0 \\ I \end{bmatrix} \]

where sizes of the identity matrices involved are determined by context. We also partition B by its block-columns and C by its block-rows. Thus, $B_1 \triangleq BE_1, B_2 \triangleq BE_2, C_1 \triangleq E_1^T C$, and $C_2 \triangleq E_2^T C$. The optimization problem (7) becomes

\[\begin{align*}
\text{minimize} & \quad \|P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}\| \\
\text{subject to} & \quad K \text{ is proper and rational} \\
& \quad K \text{ is stabilizing} \\
& \quad K \in S
\end{align*} \]

We make the same substitution $Q = K(I - P_{22}K)^{-1}$. Note that from (5), $P_{22} \in S$. It follows that $K \in S$ if and only if $Q \in S$. This property allows us to write a convex optimization problem in Q:

\[\begin{align*}
\text{minimize} & \quad \|P_{11} + P_{12}QP_{21}\| \\
\text{subject to} & \quad Q \in \mathcal{R}H_2 \cap S
\end{align*} \]

The optimality condition for (13) is

\[\mathcal{P}_{12}P_{11}P_{21} + \mathcal{P}_{12}P_{21} \begin{bmatrix} Q_{11} \\ Q_{21} \end{bmatrix} \begin{bmatrix} 0 \\ Q_{22} \end{bmatrix} \begin{bmatrix} Q_{11} \\ Q_{21} \end{bmatrix} \begin{bmatrix} P_{21} \\ P_{21} \end{bmatrix} \in \begin{bmatrix} H_2 \oplus & L_2 \\ H_2 \oplus & H_2 \end{bmatrix} \]

At this point, our solution diverges from that of the centralized case. Indeed, the spectral factorization approach of Lemma 3 fails because in general, structured spectral factors may not exist.

A key observation is that if we assume Q_{11} is known, and possibly suboptimal, then the problem of finding the optimal $[Q_{21} \ Q_{22}]$ is centralized:

\[\min \|P_{11} + P_{12}E_1 Q_{11} E_1^T P_{21} + P_{12}E_2 [Q_{21} \ Q_{22}] P_{21}\| \\
\text{s.t.} \quad [Q_{21} \ Q_{22}] \in \mathcal{R}H_2 \]

and its solution is given in the following lemma.

Lemma 5. Suppose $Q_{11} \in \mathcal{R}H_2$ and has a realization

\[Q_{11} = \begin{bmatrix} A_P & B_P \\ C_P & 0 \end{bmatrix} \]
Suppose that stabilizing solutions exist to the CAREs
\[Y = \text{CARE}(A^T, C^T, W, V, U), \quad L = -(YC^T + U)V^{-1} \]
\[\bar{X} = \text{CARE}(A, B_2, Q, R_{22}, SE_2), \]
\[\bar{K} = -R_{22}^{-1}(\bar{X}B_2 + SE_2)^T = [\bar{K}_1 \quad \bar{K}_2] \]
Then there exists a unique solution to the equation
\[[\Phi \quad \bar{Z}_3] = \text{LYAP}\left((A_{22} + B_{22}\bar{K}_2)^T, [A_{11} \quad 0 \quad A_P],
\begin{bmatrix}
0 \\
(E_{22}^T\bar{X}B_1 + S_{21} + \bar{K}_2^TR_{22})C_P
\end{bmatrix}\right) \]
(15)
Furthermore, a solution to (14) is given by
\[[Q_{21} \quad Q_{22}]_{opt} = \frac{\begin{bmatrix}
A_{22} + B_{22}\bar{K}_2 \\
B_{22} \\
K_k \\
K_k \\
0 \\
-B_{P}E_1^T
\end{bmatrix}}{I} \]
(16)
where we have defined \(\bar{K} = \bar{K} - R_{22}^{-1}B_{22}\Phi E_1^T \).

Proof. The components of (14) may be simplified. Routine algebraic manipulations yield
\[\mathcal{P}_{11} + \mathcal{P}_{12}E_1Q_{11}E_1^T\mathcal{P}_{21} = \begin{bmatrix}
A & 0 & B_1C_P & 0 & 0 \\
0 & A + LC & 0 & 0 & -L \\
0 & B_P C_1 & A_P & B_P E_1^T \\
F & F & H E_1 C_P & 0 & 0
\end{bmatrix} \]
and
\[\mathcal{P}_{12}E_2 = \begin{bmatrix}
A_{22} & B_{22} \\
F E_2 & H E_2
\end{bmatrix} \]
Since (14) is centralized, we may apply Lemma 3, and the optimal \([Q_{21} \quad Q_{22}]\) is given by (11). This formula can be simplified considerably if we take a closer look at the Sylvester equations (10). The estimation equation,
\[\begin{bmatrix}
\hat{Z} = \text{LYAP}\left(\begin{bmatrix}
A & 0 & B_1 C_P \\
0 & A & 0 \\
B_P C_1 & A_P \\
0 & W + UL^T \\
B_P E_1^T (U^T + VL^T)
\end{bmatrix}\right), (A + LC)^T, \]
is satisfied by \(\hat{Z} = \begin{bmatrix} 0 & Y & 0 \end{bmatrix}^T \), which does not depend on \(A_P, B_P, \) or \(C_P \). The control equation,
\[\dot{Z} = \text{LYAP}\left((A_{22} + B_{22}\bar{K}_2)^T, [A \quad 0 \quad B_1 C_P],
\begin{bmatrix}
0 \\
(A + LC)^T \\
B_P C_1 \quad A_P
\end{bmatrix}
\right), \]
\[E_2^T [Q \quad SE_1 C_P] + \bar{K}_2^T E_2^T [S^T \quad S^T \quad R E_1 C_P] \]
has a first subequation that decouples from the rest, and whose solution is \(E_2^T \hat{X} \). Indeed, \(\dot{Z} \) must be of the form:
\[\dot{Z} = \begin{bmatrix} E_2^T \hat{X} \quad E_2^T \hat{X} + \Phi E_1^T \quad \bar{Z}_3 \end{bmatrix} \]
where \(\Phi \) and \(\bar{Z}_3 \) satisfy (15). Substituting into (11) and simplifying, we obtain (16).

A similar result holds if we fix \(Q_{22} \). Our centralized optimization problem is then:
\[\min \quad \left\| \mathcal{P}_{11} + \mathcal{P}_{12}E_2Q_{22}E_2^T\mathcal{P}_{21} + \mathcal{P}_{12} \begin{bmatrix}
Q_{11} \\
Q_{21}
\end{bmatrix} E_1^T\mathcal{P}_{21} \right\| \]
s.t. \[\begin{bmatrix}
Q_{11} \\
Q_{21}
\end{bmatrix} \in \mathcal{R}\mathcal{H}_2 \]
and its solution is given in the following lemma.

Lemma 6. Suppose \(Q_{22} \in \mathcal{R}\mathcal{H}_2 \) and has a realization
\[Q_{22} = \begin{bmatrix}
A_Q \\
B_Q \\
C_Q \\
0
\end{bmatrix} \]
Suppose that stabilizing solutions exist to the CAREs
\[X = \text{CARE}(A, B, Q, R, S), \quad K = -R^{-1}(XB + S)^T \]
\[\bar{Y} = \text{CARE}(A^T, C_1^T, W, V_{11}, U E_1), \]
\[\bar{L} = -(\bar{Y} C_1^T + U E_1) V_{11}^{-1} = \begin{bmatrix}
\bar{L}_1 \\
\bar{L}_2
\end{bmatrix} \]
Then there exists a unique solution to the equation
\[\begin{bmatrix}
\Psi \\
\bar{Z}_3
\end{bmatrix} = \text{LYAP}\left(\begin{bmatrix}
A_{22} & B_{22}C_Q \\
0 & A_Q \\
0 & 0 \\
B_Q C_2 & A_Q \\
0 & 0
\end{bmatrix}, (A_{11} + \bar{L}_1 C_{11})^T, \]
\[\begin{bmatrix}
0 \\
0 \\
-\bar{L}_1 \\
B_Q C_2 \bar{Y} E_1 + U_{12} + V_{21} \bar{L}_1^T
\end{bmatrix}\right) \]
(18)
Furthermore, a solution to (17) is given by
\[\begin{bmatrix}
Q_{11} \\
Q_{21}
\end{bmatrix}_{opt} = \begin{bmatrix}
A + B K \\
0 \\
A \\
0 \\
B_Q C_2 \\
0 \\
-\bar{L}_1 \\
\bar{L}_1 \\
C_{11}
\end{bmatrix} \begin{bmatrix}
0 \\
-\bar{L}_1 \\
B_Q C_2 \bar{Y} E_1 + U_{12} + V_{21} \bar{L}_1^T
\end{bmatrix} \begin{bmatrix}
0 \\
0 \\
-\bar{L}_1 \\
\bar{L}_1 \\
C_{11}
\end{bmatrix} \]
(19)
where we have defined \(\bar{L} = \bar{L} - E_2 \Psi C_1^T V_{11}^{-1} \).

Proof. The proof is omitted, as it is analogous to that of Lemma 5.
Remark 7. If we isolate the optimal Q_{22} from Lemma 5, it simplifies greatly. Indeed, if we multiply (16) on the right by E_2, we obtain

$$Q_{22} = \begin{bmatrix} A_{22} + B_{22}K_2 & B_{22}K & 0 \\ 0 & A + LC & -LE_2 \\ K_2 & K & 0 \end{bmatrix}$$ \hspace{1cm} (20)

Similarly, the optimal Q_{11} from Lemma 6 simplifies to

$$Q_{11} = \begin{bmatrix} A + BK & \hat{L}C_1 & -\hat{L} \\ 0 & A_{11} + \hat{L}_1C_{11} & -\hat{L}_1 \\ E^T_1K & 0 & 0 \end{bmatrix}$$ \hspace{1cm} (21)

Remark 7 is the key observation that allows us to find a relatively simple analytic formula for the optimal controller. By substituting the result of Lemma 6 into Lemma 5, or vice-versa, we can obtain a simple set of equations that characterize the optimal controller.

6 Main Results

In this section, we present our main result: an explicit solution to (13). We begin by presenting some assumptions that will be needed to guarantee a solution.

A1. (A, B_2) is stabilizable.

A2. $R = HT^T H > 0$

A3. $\begin{bmatrix} A - j\omega I & B \\ F & H \end{bmatrix}$ has full column rank for all $\omega \in \mathbb{R}$.

A4. (C_1, A) is detectable.

A5. $V = NN^T > 0$

A6. $\begin{bmatrix} A - j\omega I & M \\ C & N \end{bmatrix}$ has full row rank for all $\omega \in \mathbb{R}$.

Note that because we assumed A is stable, assumptions A1 and A4 are redundant. Next, we present the equations we will need to solve in order to construct the optimal controller. First, we have two control CAREs and their associated gains

$$X = \text{CARE}(A, B, Q, R, S)$$

$$K = -R^{-1}(XB + S)^T$$

Next, we have the analogous set of estimation equations.

$$\hat{X} = \text{CARE}(A, B_2, Q, R_{22}, SE_2)$$

$$\hat{K} = -R^{-1}_{22}(\hat{X}B_2 + SE_2)^T = [\hat{K}_1 \quad \hat{K}_2]$$

Finally, we define a pair of coupled linear equations that must also be solved for Φ and Ψ.

$$(A_{22} + B_{22}\hat{K}_2)^T\Phi + \Phi(A_{11} + \hat{L}_1C_{11}) + E_2^T(\tilde{X} - X)(\tilde{L} - E_2\Psi C_{11}^TV_{11}^{-1})C_{11} = 0$$

$$(A_{22} + B_{22}\hat{K}_2)\Psi + \Psi(A_{11} + \hat{L}_1C_{11})^T + B_{22}(\hat{K} - R^{-1}_{22}B_{22}\Phi E_1^T)(\tilde{Y} - Y)E_1 = 0$$

Note that these equations are linear in Φ and Ψ and can be solved easily; for example, they may be written in standard $Ax = b$ form using the Kronecker product. For convenience, we reiterate here the gains \hat{K} and \hat{L} that were defined in Lemmas 5 and 6.

$$\hat{K} = \hat{K} - R^{-1}_{22}B_{22}\Phi E_1^T$$

$$\hat{L} = \hat{L} - E_2\Psi C_{11}^TV_{11}^{-1}$$

The following lemma guarantees the existence of solutions to the CAREs.

Lemma 8

The assumptions A1–A6 or B1–B3 are necessary and sufficient for the existence of stabilizing solutions to the CAREs (22)–(25).

Proof. This is a standard result regarding CAREs. See for example [21, §13].

Remark 9

A simpler sufficient (but not necessary) set of conditions that guarantees the existence of stabilizing solutions to (22)–(25) is given by:

B1. $R > 0$ and $V > 0$

B2. (A, B_2) and (A, W) are controllable

B3. (C_1, A) and (Q, A) are observable

What follows is the main result of the paper.

Theorem 10

Suppose assumptions A1–A6 or B1–B3 hold. Then (26) has a unique solution, and an optimal solution to (13) is given by

$$Q_{\text{opt}} =$$

$$\begin{bmatrix} A + BK & -\hat{L}C_1 & 0 & -\hat{L}E_1^T \\ 0 & A + B_2\hat{K} + \hat{L}C_1 & -B_2\hat{K} & LE_1^T \\ 0 & 0 & A + LC & L \\ K & E_2K & -E_2K & 0 \end{bmatrix}$$ \hspace{1cm} (28)

Proof. Solving (13) is equivalent to simultaneously solving (14) and (17). To see why, write the optimality conditions for each one

$$E_2^TP_{12}^* (P_{11} + P_{12} \begin{bmatrix} Q_{11} & 0 \\ Q_{21} & Q_{22} \end{bmatrix} P_{21}) P_{21}^* \in [H^1_2, H^2_2]$$

$$P_{12}^* (P_{11} + P_{12} \begin{bmatrix} Q_{11} & 0 \\ Q_{21} & Q_{22} \end{bmatrix} P_{21}) P_{21}^* E_1 \in [H^1_2, H^2_2]$$

6
and note that they are equivalent to

\[P_{12} \left(P_{11} + P_{12} \begin{bmatrix} Q_{11} & 0 \\ Q_{21} & Q_{22} \end{bmatrix} P_{21} \right) P_{21} = \begin{bmatrix} H_1^2 & L_2 \\ H_2^2 & H_3^2 \end{bmatrix} \]

(29)

which is the optimality condition for (13). There always exists an optimal rational controller [10]. Therefore, a solution to (29) exists, and hence there must also exist a simultaneous solution to (14) and (17).

By Lemma 8, we have stabilizing solutions to (22)–(25), so we may apply Lemmas 5 and 6. Thus, there must exist \(\Phi, \Psi, \tilde{Z}_3, \) and \(\tilde{Z}_3 \) that simultaneously satisfy (15) and (18). Substituting (21) as \((A_P, B_P, C_P)\) in (15) and similarly (20) as \((A_Q, B_Q, C_Q)\) in (18), we obtain two augmented Sylvester equations. Algebraic manipulations and reductions, we arrive at (30).

\[\tilde{Z}_3 = \begin{bmatrix} E_2^T (\tilde{X} - X) \\ \Phi \end{bmatrix} \]

and \(\tilde{Z}_3 = \begin{bmatrix} \Psi \\ (\tilde{Y} - Y) E_1 \end{bmatrix} \)

where \(\Phi \) and \(\Psi \) satisfy (26). This establishes existence and uniqueness of a solution to (26). Upon substituting these values back into (16) or (19), we obtain an explicit formula for the blocks of \(Q \). Upon simplification, we obtain (28).

Theorem 11. Suppose assumptions A1–A6 or B1–B3 hold. An optimal solution to (12) is given by

\[
\mathcal{K}_{\text{opt}} = \begin{bmatrix}
A + BK + LC_1 & 0 \\
BK - B_2 \hat{K} & A + LC + B_2 \hat{K} \\
K - E_2 \hat{K} & E_2 \hat{K}
\end{bmatrix}
\begin{bmatrix}
-\hat{L} \hat{E}_1^T \\
-\hat{L} \\
0
\end{bmatrix}
\]

(30)

Proof. Obtain \(Q_{\text{opt}} \) from Theorem 10, and transform using \(\mathcal{K}_{\text{opt}} = Q_{\text{opt}} (I + P_{22} Q_{\text{opt}})^{-1} \). After some algebraic manipulations and reductions, we arrive at (30).

7 State Dimension

First, note that \(Q_{\text{opt}} \) and \(\mathcal{K}_{\text{opt}} \) have the correct sparsity pattern. Indeed, all the blocks in the state-space representation are block-lower-triangular. We can also verify that \(Q_{\text{opt}} \) is stable; the eigenvalues of its \(A \)-matrix are the eigenvalues of \(A + BK, A_{11} + \hat{L}_1 C_{11}, A_{22} + B_2 \hat{K}_2, \) and \(A + LC \), which are stable by construction.

This is the first time a state-space formula has been found for the two-player output-feedback problem. In particular, we now know the state dimension of the optimal controller. If \(A_{11} \in \mathbb{R}^{n_1 \times n_1} \) and \(A_{22} \in \mathbb{R}^{n_2 \times n_2} \), then \(\mathcal{K}_{\text{opt}} \) has at most \(2n_1 + 2n_2 \) states. However, notice that the numbers of states above may not represent the number of states required for a decentralized implementation. In particular, if the two controllers cannot communicate, then the first controller needs a realization of \(\mathcal{K}_{11} \) and the second controller needs a realization of \(\begin{bmatrix} \mathcal{K}_{21} & \mathcal{K}_{22} \end{bmatrix} \).

In this case, the first controller will have \(n_1 + n_2 \) states, and the second controller will have \(2n_1 + 2n_2 \) states.

In the table below, we compare the number of states required for each player’s optimal controller in a variety of special cases appearing previously in the literature.

<table>
<thead>
<tr>
<th>Special Cases</th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-feedback [13, 15]</td>
<td>(n_2)</td>
<td>(n_2)</td>
</tr>
<tr>
<td>Partial output-feedback [16]</td>
<td>(n_2)</td>
<td>(2n_2)</td>
</tr>
<tr>
<td>Dynamically decoupled [3]</td>
<td>(n_1 + n_2)</td>
<td>(n_1 + 2n_2)</td>
</tr>
<tr>
<td>General output-feedback</td>
<td>(n_1 + n_2)</td>
<td>(2n_1 + 2n_2)</td>
</tr>
</tbody>
</table>

As expected, the general output-feedback solution presented herein requires more states than any of special cases. In every case above, Player 2’s state includes Player 1’s state. Thus, the number of states for the whole controller \(\mathcal{K}_{\text{opt}} \) is the same as the number of states for Player 2. Note as well that if we make the problem centralized by removing the structural constraint on the controller, the optimal controller requires \(n_1 + n_2 \) states.

8 Estimation Structure

The estimation structure is also revealed in (30). If we label the states of \(\mathcal{K}_{\text{opt}} \) as \(\zeta \) and \(\xi \), then the state-space equations are:

\[
\begin{aligned}
\dot{\zeta} &= A \zeta + BK \zeta - \hat{L}(y_1 - C_1 \zeta) \\
\dot{\xi} &= A \xi + Bu - L(y - C \xi) \\
u &= K \zeta + E_2 \hat{K}(\xi - \zeta)
\end{aligned}
\]

The second equation is the optimal centralized state estimator, given by the Kalman filter. Thus, \(\xi = \mathbb{E}(x \mid y) \). It can also be shown that \(\zeta = \mathbb{E}(x \mid y_1) \), but we omit the proof due to space constraints. This fact is not obvious, because the equation for \(\zeta \) depends on \(\hat{L} \), which depends on \(\Psi \), and in turn depends on all the parameters of the problem. The controller output \(u \) is the centralized LQR controller plus a correction term which depends on the discrepancy between both state estimates.

9 Conclusion

We have shown how to construct the \(H_2 \)-optimal controller for a two-player output-feedback architecture. The optimal controller, which was not previously known, has twice as many states as the original system. Computing it requires solving four standard AREs and one pair of linearly coupled Sylvester equations.

10 Acknowledgements

The first author would like to thank John Swigart and Jong-Han Kim for some very insightful discussions.
References

