Betting on football with future knowledge

This week’s Fiddler is a football-themed puzzle with a twist: you can see the future! Sort of.

You know ahead of time that your football team will win 8 of their 12 remaining games, but you don’t know which ones. You can place bets on every game, placing bets either for or against your team. You can bet any amount up to how much you currently have. You want to implement a betting strategy that guarantees you’ll have as much money as possible after the 12 games are complete. If you did so, then after the 12 games how much money would you be guaranteed to have if you started with $100?

My solution:
[Show Solution]

A more elegant alternative solution, due in large part to a clever observation by Vince Vatter.
[Show Solution]

Optimal baseball lineup

This week’s Fiddler is a problem about how to set the optimal baseball lineup.

Eight of your nine batters are “pure contact” hitters. One-third of the time, each of them gets a single, advancing any runners already on base by exactly one base. (The only way to score is with a single with a runner on 3rd). The other two-thirds of the time, they record an out, and no runners advance to the next base. Your ninth batter is the slugger. One-tenth of the time, he hits a home run. But the remaining nine-tenths of the time, he strikes out. Your goal is to score as many runs as possible, on average, in the first inning. Where in your lineup (first, second, third, etc.) should you place your home run slugger?

Extra Credit: Instead of scoring as many runs as possible in the first inning, you now want to score as many runs as possible over the course of nine innings. What’s more, instead of just having one home run slugger, you now have two sluggers in your lineup. The other seven batters remain pure contact hitters. Where in the lineup should you place your two sluggers to maximize the average number of runs scored over nine innings?

My solution:
[Show Solution]

Braille puzzle

This week’s Fiddler is a counting problem about the Braille system.

Braille characters are formed by raised dots arranged in a braille cell, a three-by-two array. With six locations for dots, each of which is raised or unraised, there are 26, or 64, potential braille characters.

Each of the 26 letters of the basic Latin alphabet (shown below) has its own distinct arrangement of dots in the braille cell. What’s more, while some arrangements of raised dots are rotations or reflections of each other (e.g., E and I, R and W, etc.), no two letters are translations of each other. For example, only one letter (A) consists of a single dot – if there were a second such letter, A and this letter would be translations of each other.

Of the 64 total potential braille characters, how many are in the largest set such that no two characters consist of raised dot patterns that are translations of each other?

Extra Credit In addition to six-dot braille, there’s also an eight-dot version. But what if there were even more dots? Let’s quadruple the challenge by doubling the size of the cell in each dimension. Consider a six-by-four array, where a raised dot could appear at each location in the array. Of the 224 total potential characters, how many are in the largest set such that no two characters are translations of each other?

My solution:
[Show Solution]

Making something out of nothing

This week’s Fiddler is a problem about composing functions. Here it goes:

Consider $f(n) = 2n+1$ and $g(n) = 4n$. It’s possible to produce different whole numbers by applying combinations of $f$ and $g$ to $0$. How many whole numbers between $1$ and $1024$ (including $1$ and $1024$) can you produce by applying some combination of $f$’s and $g$’s to the number $0$?

Extra Credit: Now consider the functions $g(n) = 4n$ and $h(n) = 1−2n$. How many integers between $-1024$ and $1024$ (including $-1024$ and $1024$) can you produce by applying some combination of $g$’s and $h$’s to the number $0$?

My solution:
[Show Solution]

Möbius prism

This week’s Fiddler is a problem about a multi-sided Möbius prism:

Consider an three-dimensional prism whose bases are regular N-gons. I twist it and stretch it into a loop, before finally connecting the two bases. Suppose that my twist is by a random angle, such that the two bases are aligned when they are coonected. Among all whole number values of N less than or equal to 1,000, for which value of N will a randomly twisted regular N-gon prism have the most distinct faces, on average?

My solution:
[Show Solution]

How much can you pull out of a hat?

This week’s Riddler Classic is a strategy game about maximizing payout. What is the optimal strategy?

You start with just the number 1 written on a slip of paper in a hat. Initially, there are no other slips of paper in the hat. You will draw from the hat 100 times, and each time you draw, you have a choice: If the number on the slip of paper you draw is k, then you can either receive k dollars or add k higher numbers to the hat.

For example, if the hat were to contain slips with the numbers 1 through 6 and you drew a 4, you could either receive $4 or receive no money but add four more slips numbered 7, 8, 9 and 10 into the hat. In either case, the slip with the number 4 would then be returned to the hat.

If you play this game perfectly — that is, to maximize the total amount of money you’ll receive after all 100 rounds — how much money would you expect to receive on average?

My solution:
[Show Solution]

Making the fastest track

This week’s Riddler Classic is a problem about minimum-time optimization.

While passing the time at home one evening, you decide to set up a marble race course. No Teflon is spared, resulting in a track that is effectively frictionless. The start and end of the track are 1 meter apart, and both positions are 10 centimeters off the floor. It’s up to you to design a speedy track. But the track must always be at floor level or higher — please don’t dig a tunnel through your floorboards. What’s the fastest track you can design, and how long will it take the marble to complete the course?

My solution:
[Show Solution]

Ellipse packing

You’ve heard of circle packing… Well this week’s Riddler Classic is about ellipse packing!

This week, try packing three ellipses with a major axis of length 2 and a minor axis of length 1 into a larger ellipse with the same aspect ratio. What is the smallest such larger ellipse you can find? Specifically, how long is its major axis?

Extra credit: Instead of three smaller ellipses, what about other numbers of ellipses?

My solution:
[Show Solution]

N Bottles of Beer

This week’s Riddler Classic is puzzle about the world’s most annoying song.

You and your friends are singing the traditional song, “99 Bottles of Beer.” With each verse, you count down the number of bottles. The first verse contains the lyrics “99 bottles of beer,” the second verse contains the lyrics “98 bottles of beer,” and so on. The last verse contains the lyrics “1 bottle of beer.” There’s just one problem. When completing any given verse, your group of friends has a tendency to forget which verse they’re on. When this happens, you finish the verse you are currently singing and then go back to the beginning of the song (with 99 bottles) on the next verse. For each verse, suppose you have a 1 percent chance of forgetting which verse you are currently singing. On average, how many total verses will you sing in the song?

Extra credit: Instead of “99 Bottles of Beer,” suppose you and your friends are singing “N Bottles of Beer,” where N is some very, very large number. And suppose your collective probability of forgetting where you are in the song is 1/N for each verse. If it takes you an average of K verses to finish the song, what value does the ratio of K/N approach?

My solution:
[Show Solution]

Riddler Football Playoffs

This week’s Riddler Classic is a probability question inspired by the ongoing World Cup.

The Riddler Football Playoff (RFP) consists of four teams. Each team is assigned a random real number between 0 and 1, representing the “quality” of the team. If team $A$ has quality $a$ and team $B$ has quality $b$, then the probability that team $A$ will defeat team $B$ in a game is $\frac{a}{a+b}$.

In the semifinal games of the playoff, the team with the highest quality (the “1 seed”) plays the team with the lowest quality (the “4 seed”), while the other two teams play each other as well. The two teams that win their respective semifinal games then play each other in the final.

On average, what is the quality of the RFP champion?

My solution:
[Show Solution]