Squaring the square

This Riddler puzzle is about tiling a square using smaller squares.

You are handed a piece of paper containing the 13-by-13 square shown below, and you must divide it into some smaller square pieces. If you are only allowed to cut along the lines, what is the smallest number of squares you can divide this larger square into? (You could, for example, divide it into one 12-by-12 square and 25 one-by-one squares for a total of 26 squares, but you can do much better.)

Here is how I solved the problem:
[Show Solution]

And here is the tl;dr, just the solutions!
[Show Solution]

The lucky derby

In the spirit of the Kentucky Derby, this Riddler puzzle is about a peculiar type of horse race.

The bugle sounds, and 20 horses make their way to the starting gate for the first annual Lucky Derby. These horses, all trained at the mysterious Riddler Stables, are special. Each second, every Riddler-trained horse takes one step. Each step is exactly one meter long. But what these horses exhibit in precision, they lack in sense of direction. Most of the time, their steps are forward (toward the finish line) but the rest of the time they are backward (away from the finish line). As an avid fan of the Lucky Derby, you’ve done exhaustive research on these 20 competitors. You know that Horse One goes forward 52 percent of the time, Horse Two 54 percent of the time, Horse Three 56 percent, and so on, up to the favorite filly, Horse Twenty, who steps forward 90 percent of the time. The horses’ steps are taken independently of one another, and the finish line is 200 meters from the starting gate.

Handicap this race and place your bets! In other words, what are the odds (a percentage is fine) that each horse wins?

Here is my full derivation (long!):
[Show Solution]

For the tl;dr, the answer is:
[Show Solution]

Colorful balls puzzle

This Riddler puzzle about an interesting game involving picking colored balls out of a box. How long will the game last?

You play a game with four balls: One ball is red, one is blue, one is green and one is yellow. They are placed in a box. You draw a ball out of the box at random and note its color. Without replacing the first ball, you draw a second ball and then paint it to match the color of the first. Replace both balls, and repeat the process. The game ends when all four balls have become the same color. What is the expected number of turns to finish the game?

Extra credit: What if there are more balls and more colors?

Here is my solution to the first part (four balls):
[Show Solution]

Here is my solution to the general case with $N$ balls:
[Show Solution]

Pick a card!

This Riddler puzzle is about a card game where the goal is to find the largest card.

From a shuffled deck of 100 cards that are numbered 1 to 100, you are dealt 10 cards face down. You turn the cards over one by one. After each card, you must decide whether to end the game. If you end the game on the highest card in the hand you were dealt, you win; otherwise, you lose.

What is the strategy that optimizes your chances of winning? How does the strategy change as the sizes of the deck and the hand are changed?

Here is my solution:
[Show Solution]

A supreme court puzzle

This timely Riddler puzzle is about filling supreme court vacancies…

Imagine that U.S. Supreme Court nominees are only confirmed if the same party holds the presidency and the Senate. What is the expected number of vacancies on the bench in the long run?

You can assume the following:

  • You start with an empty, nine-person bench.
  • There are two parties, and each has a 50 percent chance of winning the presidency and a 50 percent chance of winning the Senate in each election.
  • The outcomes of Senate elections and presidential elections are independent.
  • The length of time for which a justice serves is uniformly distributed between zero and 40 years.

Here is my solution:
[Show Solution]

The troll and the dwarves

This Riddler puzzle is a classic! Can you save the dwarves from the troll?

A giant troll captures 10 dwarves and locks them up in his cave. That night, he tells them that in the morning he will decide their fate according to the following rules:

  1. The 10 dwarves will be lined up from shortest to tallest so each dwarf can see all the shorter dwarves in front of him, but cannot see the taller dwarves behind him.
  2. A white or black dot will be randomly put on top of each dwarf’s head so that no dwarf can see his own dot but they can all see the tops of the heads of all the shorter dwarves.
  3. Starting with the tallest, each dwarf will be asked the color of his dot.
  4. If the dwarf answers incorrectly, the troll will kill the dwarf.
  5. If the dwarf answers correctly, he will be magically, instantly transported to his home far away.
  6. Each dwarf present can hear the previous answers, but cannot hear whether a dwarf is killed or magically freed.

The dwarves have the night to plan how best to answer. What strategy should be used so the fewest dwarves die, and what is the maximum number of dwarves that can be saved with this strategy?

Extra credit: What if there are only five dwarves?

Here is my solution:
[Show Solution]

The honest prince

This Riddler puzzle is about randomly generating convex quadrilaterals.

You’re the most eligible bachelorette in the kingdom, and you’ve decided to marry a prince. The king has invited you to his castle so that you may choose from among his three sons. The eldest prince is honest and always tells the truth. The youngest prince is dishonest and always lies. The middle prince is mischievous and tells the truth sometimes and lies the rest of the time. Because you will be forever married to one of the princes, you want to marry the eldest (truth-teller) or the youngest (liar) because at least you know where you stand with each. But there’s a problem: You can’t tell the princes apart just by looking, and the king will grant you only one yes-or-no question that you may address to only one of the brothers.

What yes-or-no question can you ask that will ensure that you do not marry the middle prince?

Here is my solution:
[Show Solution]

Convex ranches

This Riddler puzzle is about randomly generating convex quadrilaterals.

Consider four square-shaped ranches, arranged in a two-by-two pattern, as if part of a larger checkerboard. One family lives on each ranch, and each family builds a small house independently at a random place within the property. Later, as the families in adjacent quadrants become acquainted, they construct straight-line paths between the houses that go across the boundaries between the ranches, four in total. These paths form a quadrilateral circuit path connecting all four houses. This circuit path is also the boundary of the area where the families’ children are allowed to roam.

What is the probability that the children are able to travel in a straight line from any allowed place to any other allowed place without leaving the boundaries? (In other words, what is the probability that the quadrilateral is convex?)

Here is my solution:
[Show Solution]

Space race

This Riddler puzzle is about a game involving filling up the space on a square table using coins.

Two players are seated at a square table. The first player places a coin on the table, the second places a coin on the table, and they carry on placing coins one after another, with the only condition being that the coins are not allowed to touch. The winner is the person who places the final coin on the table, meaning that he or she fills the last remaining space between the other coins.

The table has to be larger than a single coin, and all the coins placed must be identically sized. If the players play optimally, is one of the two players guaranteed to win? If so, what is the winning strategy?

Need a hint?
[Show Solution]

Here is my solution:
[Show Solution]

Rope timing

This Riddler problem is all about timing:

Suppose you have four ropes and a lighter. Each rope burns at a nonconstant rate but takes exactly one hour to burn completely from one end to the other. You can only light the ropes at either of their ends but can decide when to light each end as you see fit. If you’re strategic in how you burn the ropes, how many specific lengths of time can you measure? (For example, if you had one rope, you could measure two lengths of time: one hour, by simply burning the entire rope from one end, and half an hour, by burning the rope from both ends and marking when the flames meet.)

Extra credit: What if you had N ropes?

Here is my solution:
[Show Solution]

Note: my solution is incomplete (see comments below!)